Two New Iridoid Glycosides from Hedyotis tenelliflora BLUME

by Jing-Feng Zhao, Qin-Mei Yuan, Xiao-Dong Yang, Hong-Bing Zhang, and Liang Li*

School of Pharmacy, Center for Advanced Studies of Medicinal and Organic Chemistry, Yunnan University, Kunming 650091, Yunnan, P. R. China

(phone: +86-871-5033644; fax: +86-871-5035538; e-mail: liliang5758@sina.com)

Two new iridoid glycosides, teneoside A (=(2aR,5S)-5-[(β -D-glucopyranosyl)oxy]-2a,4a,5,7b-tetrahydro-4-{[(α -L-rhamnopyranosyl)oxy]methyl}-1*H*-2,6-dioxacyclopenta[*cd*]inden-1-one; **1**) and teneoside B (=methyl (1*S*,5*R*)-1-[(β -D-glucopyranosyl)oxy]-1,4a,5,7a-tetrahydro-5-hydroxy-7-{[(α -L-rhamnopyranosyl)oxy]methyl}-cyclopenta[*c*]pyran-4-carboxylate; **2**), were isolated from the roots of *Hedyotis tenelliflora* BLUME, along with two known compounds, deacetylasperuloside (**3**) and scandoside methyl ester (**4**). Their structures were elucidated by chemical methods (acid hydrolysis) and spectroscopic analyses.

1. Introduction. – Many species of the genus *Hedyotis* (Rubiaceae) are used in Chinese folk medicine [1]. Iridoid glycosides, triterpenoids [2], lignan glycosides, flavonids, and anthraquinones [3] have been reported from several *Hedyotis* genera [4]. *Hedyotis tenelliflora* BLUME is a medicinal herb called '*xiazicao*' by the Dai people living in Lincang, Yunnan Province. This plant has been used for the treatment of snake wounds, nephritis, hepatitis, rheumatic arthritis, and inflammations [5]. The plant, although commonly found in China, has not been examined with regard to chemical constituents. In this paper, we report two new iridoid glycosides from *H. tenelliflora*, teneoside A (1) and teneoside B (2), which were isolated together with two known iridoid glycosides, deacetylasperuloside (3) and scandoside methyl ester (4).

Glc = β -D-glucopyranosyl, Rha = α -L-rhamnopyranosyl

2. Results and Discussion. – Compound **3**, an amorphous powder, had the molecular formula $C_{16}H_{20}O_{10}$, as established by HR-FAB-MS (m/z 372.1054 ($[M + H]^+$, calc. 372.1057)). The IR spectrum indicated a OH (3429), an α,β -unsaturated ester (1709), and C=C groups (1635 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **3** (*Tables 1* and 2, resp.) displayed signals typical of a dimeric iridoid glycoside [6]. ¹H- and ¹³C-NMR assignments were made with the help of ¹H,¹H-COSY and HSQC experiments, starting with the easily distinguishable acetal H–C(1) atom at $\delta(H)$ 5.78 ($\delta(C)$ 96.5), H–C(9)

^{© 2005} Verlag Helvetica Chimica Acta AG, Zürich

at $\delta(H)$ 3.21 ($\delta(C)$ 45.6), and H–C(5) at $\delta(H)$ 3.52 ($\delta(C)$ 39.5), and further correlated with the HMBC spectrum. By comparison of the ¹H- and ¹³C-NMR spectroscopic data of **3** with literature values, this compound was identified as deacetylasperuloside, which had previously been isolated from *H. chrysotricha* [7][8].

Table 1. ^{*I*}*H-NMR Data for Compounds* **1–4.** At 500 MHz in D₂O; δ in ppm, *J* in Hz. Primed (') and doubly primed ('') numbers refer to Glc and Rha atoms, resp. Arbitrary atom numbering¹).

Position	1	2	3	4
1	5.82 (d, J = 1.8)	5.38 $(d, J = 5.1)$	5.78 $(d, J = 1.4)$	5.42 (d, J = 5.0)
3	7.31 $(d, J = 2.8)$	7.48 $(d, J = 0.86)$	7.23 (d, J = 2.8)	7.51 (d, J = 0.92)
5	3.55 (d, J = 3.6)	3.21(t, J = 6.3)	3.52 (d, J = 3.8)	3.24(t, J = 6.5)
6	5.60 (<i>m</i>)	4.58(t, J = 1.9)	5.53 (<i>m</i>)	4.60 (t, J = 1.7)
7	5.68 (<i>m</i>)	5.81 $(t, J = 1.8)$	5.56 (<i>m</i>)	5.84 $(t, J = 1.7)$
9	3.33 (<i>m</i>)	3.05 (<i>m</i>)	3.21 (<i>m</i>)	3.09 (<i>m</i>)
10	4.56 (s)	4.88(s)	4.07 (s)	4.33 (dd, J = 0.5, 15.4)
				4.26 (dd, J = 0.5, 15.2)
MeO	-	3.75(s)	-	3.76(s)
1′	4.76 (d, J = 8.2)	4.80 (d, J = 8.0)	4.79 (d, J = 8.2)	4.79 (d, J = 7.9)
2′	3.27 (dd, J = 7.9, 9.3)	3.27 (dd, J = 7.9, 9.1)	3.27 (dd, J = 8.2, 9.5)	3.271 (dd, J = 8.2, 9.4)
3′	3.40 (t, J = 9.1)	3.36(t, J = 9.1)	3.38(t, J = 9.5)	3.39(t, J = 9.5)
4′	3.25(t, J = 9.1)	3.23(t, J = 9.1)	3.24(t, J = 9.9)	3.49(t, J = 9.2)
5'	3.34 (<i>m</i>)	3.33 (<i>m</i>)	3.46 (ddd, J = 2.4, 6.4, 8.1)	3.44 (<i>m</i>)
6'	3.67 (dd, J = 11.9, 6.7)	3.65 (dd, J = 6.7, 12.0)	3.78 (dd, J = 2.1, 12.6)	3.89 (dd, J = 2.2, 12.4)
	3.94 (dd, J = 11.9, 2.1)	3.94 (dd, J = 2.2, 12.4)	3.56 (dd, J = 5.8, 12.4)	3.72 (dd, J = 5.8, 12.4)
1″	5.10 (d, J = 1.8)	5.10 (d, J = 1.7)	_	-
2"	3.93 (dd, J = 3.5, 1.8)	3.86 (dd, J = 3.7, 2.0)	-	-
3″	3.67 (dd, J = 3.3, 9.5)	3.81 (dd, J = 3.7, 9.3)	_	_
4''	3.64(t, J = 9.8)	3.52(t, J=9.5)	_	-
5″	3.81 (dd, J = 10.5, 6.2)	3.91 (dd, J = 10.0, 6.2)	_	_
6″	1.21 $(d, J = 6.2)$	1.21 $(d, J = 6.2)$	-	-

Compound **1**, an amorphous powder, had the molecular formula $C_{22}H_{30}O_{14}$, established on the basis of HR-FAB-MS (m/z 518.1640 ($[M + H]^+$, calc. 518.1636)). The IR, ¹H-, and ¹³C-NMR spectra displayed signals typical of a dimeric iridoid glycoside like **3**. However, **1** displayed signals for *two* anomeric H-atoms at $\delta(H)$ 4.82 (d, J = 58.0 Hz; $\delta(C)$ 100.29) and 5.12 (d, J = 51.5 Hz; $\delta(C)$ 98.13), which indicated two sugar moieties. By comparison with NMR chemical-shift values and coupling constants [9][10], as well as by acid hydrolysis, followed by TLC and GC/MS analyses, one β -D-glucopyranosyl (Glc) and one α -L-rhamnpyranosyl (Rha) moiety ($\delta(H)$ 1.21 (d, J = 6.2 Hz; $\delta(C)$ 18.0) were identified. Regarding the aglycone of **1**, H–C(1) exhibited HMBC long-range couplings with C(1') of Glc, and H–C(10) correlated with C(1'') of the Rha moiety, which indicated that Glc and Rha were connected to the aglycone *via* glycoside linkages at positions 1 and 10, respectively. From these data, the structure of **1** was identified as 10-*O*-(α -L-rhamno)deacetylasperuloside, for which we proposed the trivial name *teneoside* A^1).

Compound 4, an amorphous powder, had the molecular formula $C_{17}H_{24}O_{11}$, as established on the basis of HR-FAB-MS (m/z 404.1322 ($[M+H]^+$, calc. 404.1319)).

¹⁾ For systematic names, see the Exper. Part.

Position	1	2	3	4
H-C(1)	95.7	98.7	96.5	99.7
H-C(3)	152.3	153.8	153.0	154.4
C(4)	107.4	112.5	108.0	114.0
H-C(5)	38.6	43.5	39.5	45.8
H-C(6)	88.5	81.8	89.5	83.4
H-C(7)	127.0	133.5	128.1	131.5
C(8)	149.1	147.8	150.2	148.7
H-C(9)	45.1	48.5	45.6	48.3
$CH_{2}(10)$	70.9	71.8	62.1	62.4
C(11)	174.5	172.1	174.1	172.2
MeO	-	54.4	-	54.6
H - C(1')	102.5	102.2	102.5	101.7
H-C(2')	75.8	75.4	75.8	75.3
H-C(3')	79.5	79.6	79.3	79.5
H-C(4')	71.9	72.4	72.5	72.6
H - C(5')	78.5	78.8	78.5	78.8
CH ₂ (6')	63.6	63.5	63.8	63.8
H - C(1'')	102.0	102.1	-	-
H - C(2'')	72.1	72.3	_	_
H-C(3")	72.1	72.3	_	_
H - C(4'')	73.9	73.8	_	-
H-C(5")	70.3	70.2	_	-
Me(6")	18.0	18.0	-	-

Table 2. ¹³C-NMR Data for Compounds 1–4. At 125 MHz in D₂O; δ in ppm. Primed (') and doubly primed ('') numbers refer to Glc and Rha atoms, resp. Arbitrary atom numbering¹).

The IR spectrum indicated OH (3429)), ester C=O (1738), and C=C groups (1635 cm⁻¹). The ¹H- and ¹³C-NMR spectra displayed signals typical of an iridoid glycoside. Sequential ¹H- and ¹³C-NMR assignments were made with the help of ¹H,¹H-COSY, HSQC, and HMBC spectra. By comparison with literature values, compound **4** was identified as scandoside methyl ester, which had previously been isolated from *H. chrysotricha* [7][8].

Compound **2**, an amorphous powder, had the molecular formula $C_{23}H_{34}O_{15}$, as established on the basis of HR-FAB-MS (m/z 550.1892 ($[M + H]^+$, calc. 550.1898)). The ¹H- and ¹³C-NMR spectra of **2** were similar to those of **4**, except for signals arising from the sugar moieties. The ¹H-NMR spectrum exhibited signals for two anomeric Hatoms at $\delta(H)$ 4.80 (d, J = 8.0 Hz; $\delta(C)$ 102.2) and $\delta(H)$ 5.10 (d, J = 1.7 Hz; $\delta(C)$ 102.1). By comparison with literature NMR data [9][10], the two sugar moieties were identified as Glc and Rha. This was further confirmed by acid hydrolysis, followed by TLC and GC/MS analyses. The H–C(1) resonance of the aglycone of **2** exhibited HMBC long-range couplings with C(1') of Glc, and H–C(10) correlated with C(1'') of Rha, which indicated glycoside linkages at C(1) and C(10), respectively. From all these data, the structure of **2** was identified as 10-*O*-(α -L-rhamno)scandoside methyl ester, which was named *teneoside B*.

Experimental Part

General. Column chromatography (CC): silica gel (100–200 or 200–300 mesh; *Quingdao*) or Sephadex LH-20 gel (Amersham Pharmacia). Thin-layer chromatography (TLC): silica gel GF_{254} plates (*Qingdao*). All solvents were industrial products, and redistilled before using. M.p.: Kofler apparatus, uncorrected. UV Spectra: Shimadzu UV-210A apparatus; λ_{max} in nm (log ε). IR Spectra: Shimadzu IR-450 spectrophotometer, KBr pellets; in cm⁻¹. ¹H- (500 MHz), ¹³C- and DEPT 90- and 135-NMR (125 MHz), and two dimensional (2D)-NMR (COSY, HMBC, HMQC, NOESY) spectra were recorded on a Bruker AV300 spectrometer in D₂O; δ in ppm rel. to Me₄Si, J in Hz. HR-FAB-MS (pos. mode): VG Auto Spec-3000 spectrometer; in m/z. GC/MS: Thermo Finnigan Trace apparatus, Rtx-5 MS column (15 m × 0.25 mm; 0.25 µm; Thamek Restek UK, Ltd.).

Plant Material. The plants were collected from LinCang, Yunnan Province, P. R. China, and identified by Prof. *Hu Zhihao*, Department of Biology, Yunnan University, P. R. China. A voucher specimen was deposited at the Phytochemistry Department, School of Pharmacy, Yunnan University.

Extraction and Isolation. Air-dried, finely sliced roots of *Hedyotis tenelliflora* BLUME (5.2 kg) were extracted repeatedly with 95% EtOH. The extracts were combined, and concentrated *in vacuo*. The resulting residue was dissolved in H₂O, filtered, and the filtrate was purified with the aid of a macro-reticular resin column, eluting successively with H₂O, 50% aq. EtOH, and 95% aq. EtOH: fractions *Fr. 1, 2,* and *3. Fr. 3* (25 g) was separated by vacuum CC (SiO₂; CHCl₃/MeOH mixtures of increasing polarity). The fraction eluted with CHCl₃/MeOH 85:15 was re-chromatographed (1. *Sephadex LH-20*, MeOH; 2. SiO₂) to afford **4** (80 mg) and **1** (20 mg). *Fr. 2* (15 g) was suspended in H₂O, and extracted with CHCl₃. The aq. layer (47 g) was subjected to CC (*Sephadex LH-20*; MeOH). The iridoid fractions were re-chromatographed (SiO₂; CHCl₃/MeOH) to afford **3** (80 mg) and **2** (20 mg).

Teneoside A (=(2aR,5S)-5-*[*(β -D-*Glucopyranosyl*)*oxy*]-2*a*,4*a*,5,7*b*-*tetrahydro*-4-*[*[(α -L-*rhamnopyranosyl*)*oxy*]*methyl*]-1H-2,6-*dioxacyclopenta*[cd]*inden*-1-*one*; **1**). Amorphous powder. M.p. 193–194⁰. UV (MeOH): 233 (4.23). [a]_D⁵ = -156.5 (*c* = 0.023, MeOH). IR (KBr): 3430, 2930, 1755, 1650, 1070. ¹H-NMR: see *Table* 1. ¹³C-NMR: see *Table* 2. FAB-MS: 518 ([M + H]⁺), 337 ([M – Rha – OH]⁺), 321 ([M – Glc – OH]⁺). HR-FAB-MS: 518.1640 ([M + H]⁺, C₂₂H₃₁O₇₄; calc. 518.1636).

Teneoside B (=*Methyl* (15,5R)-1-[(β-D-Glucopyranosyl)oxy]-1,4a,5,7a-tetrahydro-5-hydroxy-7-[[(α-L-rhamnopyranosyl)oxy]methyl]cyclopenta[c]pyran-4-carboxylate; **2**). Amorphous powder. M.p. 182–184⁰. UV (MeOH): 233 (4.480). [α]_D⁵ = -132.5 (c = 0.068, MeOH). IR (KBr): 3430, 1685, 1630, 1307, 1020. ¹H-NMR: see *Table 1*. ¹³C-NMR: see *Table 2*. FAB-MS: 550 ([M +H]⁺), 369 ([M – Rha – OH]⁺), 354 [M – Glc – OH]⁺). HR-FAB-MS: 550.1892 ([M +H]⁺, C₂₃H₃₅O₁₅; calc. 550.1898).

 $Deacetylasperuloside (= (2aR,5S)-5-[(\beta-D-Glucopyranosyl)oxy]-2a,4a,5,7b-tetrahydro-4-(hydroxymethyl)-1H-2,6-dioxacyclopenta[cd]inden-1-one;$ **3**). Amorphous powder. M.p. 156–157° (MeOH). UV (MeOH): 234 (4.28). [<math>a] $_{25}^{25} = -132.5$ (c = 0.068, MeOH). IR (KBr): 3430, 2924, 1745, 1650, 1070, 1020. ¹H-NMR: see *Table 1*. ¹³C-NMR: see *Table 2*. FAB-MS: 372 ([M + H]⁺), 354 ([$M + H - H_2O$]⁺), 175 [M - Glc - OH]⁺). HR-FAB-MS: 372.1054 ([M + H]⁺, C₁₆H₂₁O₁₀; calc. 372.1057).

Scandoside Methyl Ester (= Methyl (15,5R)-1-[(β -D-Glucopyranosyl)oxy]-1,4a,5,7a-tetrahydro-5-hydroxy-7-(hydroxymethyl)cyclopenta[c]pyran-4-carboxylate; **4**). Amorphous powder. M.p. 167–168⁰. UV (MeOH): 234 (4.36). [α]_D²⁵ = -23.5 (c = 0.078, MeOH). IR (KBr): 3425, 1689, 1632, 1650, 1307. ¹H-NMR: see *Table 1*. ¹³C-NMR: see *Table 2*. FAB-MS: 404 ([M + H]⁺), 207 ([M – Glc – OH]⁺). HR-FAB-MS: 404.1322 ([M + H]⁺, C₁₇H₂₅O[†]₁; calc. 404.1319).

Acid Hydrolysis. The appropriate compound (10 mg) was heated in a mixture of 0.5N aq. HCl (0.5 ml) and EtOH (0.5 ml) at 100⁰ for 90 min. The precipitated aglycone was collected by filtration, and the filtrate was concentrated *in vacuo* below 40⁰. The resulting residue was dissolved in EtOH (2 ml), and subjected to GC/MS; and the TLC $R_{\rm f}$ values were compared with those of authentic Glc and Rha samples.

REFERENCES

- [1] 'Zhong Guo Zhi Wu Zhi', Science Press, Beijing, a, 1999, Vol. 71, p. 32.
- [2] Q.-M. Yuan , J.-F. Zhao, J.-H. Yang, L. Li, Zhong Cao Yao 2001, 32, 754.
- [3] D. Permana, N. H. Lajis, A. G. Othman, A. M. Ali, N. Aimi, M. Kitajima, H. Takayama J. Nat. Prod. 1999, 62, 1430.
- [4] Q.-M. Yuan, J.-F. Zhao, L. Li, World Phytomed. 2001, 16, 148.
- [5] G.-N. Li, 'Yun Nan Zhong Yao Zhi', Yunnan Science & Technique Press, Kunming, 1990, p. 222.
- [6] S. Damtoft, S. Rosendal Jensen, J. Nielsen, B. J. Nielsen, *Phytochemistry* 1981, 20, 2717.

- [7] J.-N. Peng, X.-Z. Feng, X.-T. Liang, J. Nat. Prod. 1999, 62, 611.
 [8] J. N. Peng, X. Z. Feng, X. T. Liang, Yaoxue Xuebao 1997, 32, 908.
 [9] B. Ahmed, A. J. Al-Rehaily, T. A. Al-Howiriny, Biol. Pharm. Bull. 2003, 26, 462.
 [10] M. Hosny, J. P. N. Rosazza, J. Nat. Prod. 1998, 61, 734.

Received April 18, 2005